Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Microchemical Journal ; : 108933, 2023.
Article in English | ScienceDirect | ID: covidwho-20230746

ABSTRACT

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is secreted in response to an acute phase inflammation in patients who are suffering from heart failure (HF). The aim of this work was to develop an electrochemical biosensor for determining salivary IL-10 levels. Biofunctionalization strategy was improved through the use of copper-free click chemistry for the developed sensor due to its advantages, leading to high quantitative yields of stable triazoles, rapid reaction, no cytotoxic Cu(I) catalyst requirement, and high specificity of cyclooctynes toward azides. The approach involved in binding of dibenzocyclooctyne acid (DBCO-COOH) to thiol-azide assembled gold microelectrodes, later capturing the monoclonal IL-10 antibody (IL-10 mAb), and ultimately allowing direct detection of IL-10 antigen. Fourier transform infrared spectroscopy (FTIR) and nanoplotter associated with fluorescence microscopy methods have been employed to analyze and prove the biofunctionalization of the gold microelectrodes. Moreover, the electrochemical impedance spectroscopy (EIS) technique was used for detecting IL-10 antigen. The developed immunosensor showed a semi-logarithmic linear range, from 0.1 pg/mL to 5 pg/mL with R2 = 0.9815 and a limit of quantitation (LOQ) of 0.1 pg/mL with relative standard deviation (RSD) of 10.67%. The specificity of the immunosensor was evaluated using an inflammatory cytokine, and none of it generated detectable EIS signals. Finally, the successful analysis of saliva samples from a healthy volunteer without Coronavirus (COVID-19) infection demonstrated the usefulness of the developed immunosensor.

2.
Polycyclic Aromatic Compounds ; 43(3):1941-1956, 2023.
Article in English | ProQuest Central | ID: covidwho-2294201

ABSTRACT

A new series of 3-aryl/heteroaryl-2-(1H-tetrazol-5-yl) acrylamides have been synthesized through catalyst-free, one-pot cascade reactions, utilizing click chemistry approach and evaluated for their anti-COVID activities against two proteins in silico. The structural properties of the synthesized molecules were evaluated based on DFT calculations. Total energy of the synthesized tetrazole compounds were obtained through computational analysis which indicate the high stability of the synthesized compounds. The Frontier Molecular Orbitals (FMO) and associated energies and molecular electrostatic potential (MEP) surfaces were generated for the compounds. Spectral analysis by DFT gave additional evidence to the structural properties of the synthesized molecules. All tetrazole analogues come under good ADMET data as they followed the standard value for ADMET parameters. Docking studies offered evidence of the molecules displaying excellent biological properties as an anti-Covid drug. Compound 4 g exhibited excellent anti-COVID-19 properties with four hydrogen binding interactions with amino acids GLN 2.486 Å, GLN 2.436 Å, THR 2.186 Å and HSD 2.468 Å with good full-fitness score (–1189.12) and DeltaG (–7.19). Similarly, compound 4d shown potent activity against anti-COVID-19 mutant protein (PDB: 3K7H) with three hydrogen binding interactions, i.e., SER 2.274 Å, GLU 1.758 Å and GLU 1.853 Å with full-fitness score of –786.60) and DeltaG (–6.85). The result of these studies revealed that the compounds have the potential to become lead molecules in the drug discovery process.

3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2273357

ABSTRACT

COVID-19 infection is now considered one of the leading causes of human death. As an attempt towards the discovery of novel medications for the COVID-19 pandemic, nineteen novel compounds containing 1,2,3-triazole side chains linked to phenylpyrazolone scaffold and terminal lipophilic aryl parts with prominent substituent functionalities were designed and synthesized via a click reaction based on our previous work. The novel compounds were assessed using an in vitro effect on the growth of SARS-CoV-2 virus-infested Vero cells with different compound concentrations: 1 and 10 µM. The data revealed that most of these derivatives showed potent cellular anti-COVID-19 activity and inhibited viral replication by more than 50% with no or weak cytotoxic effect on harboring cells. In addition, in vitro assay employing the SARS-CoV-2-Main protease inhibition assay was done to test the inhibitors' ability to block the common primary protease of the SARS-CoV-2 virus as a mode of action. The obtained results show that the one non-linker analog 6h and two amide-based linkers 6i and 6q were the most active compounds with IC50 values of 5.08, 3.16, and 7.55 µM, respectively, against the viral protease in comparison to data of the selective antiviral agent GC-376. Molecular modeling studies were done for compound placement within the binding pocket of protease which reveal conserved residues hydrogen bonding and non-hydrogen interactions of 6i analog fragments: triazole scaffold, aryl part, and linker. Moreover, the stability of compounds and their interactions with the target pocket were also studied and analyzed by molecular dynamic simulations. The physicochemical and toxicity profiles were predicted, and the results show that compounds behave as an antiviral activity with low or no cellular or organ toxicity. All research results point to the potential usage of new chemotype potent derivatives as promising leads to be explored in vivo that might open the door to rational drug development of SARS-CoV-2 Main protease potent medicines.

4.
Curr Org Synth ; 2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-2241274

ABSTRACT

AIMS: With this aim, we have established this paper to recommend a novel way for the preparation of carbohydrates encompassing a 1,2,3-triazole motif that were prepared using an efficient click chemistry synthesis. BACKGROUND: The SARS-CoV-2 coronavirus epidemic continues to spread at a fast rate worldwide. The main protease (Mpro) is a gorgeous target for anti-COVID-19 agents. Triazoles are frequently found in many bioactive products such as coronavirus inhibitors. OBJECTIVE: Click reactions are facilitated via the activation of copper nanoparticles, different substrates have been tested using this adopted procedure given in all cases, in high yields and purity. Other interesting comparative docking analyzes will be the focus of this article. Calculations of quantitative structure-activity relationships will be studied. METHOD: Copper nanoparticles were produced by the reaction of cupric acetate monohydrate with oleylamine and oleic acid. To a solution 5-(azidomethyl)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran 2 (200 mg, 0.72 mmol, 1 eq.) in toluene (15 mL) was added (1.5 eq.) of N-(prop-2-yn-1-yl)benzamide derivatives 1a-d, copper nanoparticles (0.57 mg, 0.036 mmol, 0.05 eq.). RESULT: A novel series of 1,2,3-triazole carbohydrate skeletons were modeled and efficiently synthesized. Based on the observations of virtual screening established using molecular docking performed to identify novel compounds that can be able to bind with the protein structures of COVID-19 (PDB ID: 6LU7 and 6W41), we believed that the 1,2,3-triazole carbohydrate derivatives could aid in COVID-19 drug discovery. CONCLUSION: The formations of targeted triazoles were confirmed by different spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and CHN analysis). The docking scores of the newly synthesized triazole are maybe attributed to the presence of hydrogen bonds together with many interactions between the ligands and the active amino acid residue of the receptor. The comparison of the interactions of remdesivir drug and triazole in the largest pocket of 6W41 and 6LU7 is also presented.

5.
Oriental Journal of Chemistry ; 38(5):1104-1109, 2022.
Article in English | Web of Science | ID: covidwho-2145356

ABSTRACT

Huisgen's 1,3-dipolar cycloadditions in water of 6-azidohexan-1-ol dotted with terminal alkynes and catalyzed with copper nanoparticles, offering access to 1,2,3-triazoles 1,4-disubstituted. The SARS-CoV-2 coronavirus epidemic is still spreading at a fast rate worldwide. The core protease (Mpro) is a gorgeous mark for anti-COVID-19 agents. Click chemistry synthesis, catalyzed using nanoparticles, has been used to prepare the 1,2,3-triazole motif. The high docking score of the newly synthesized triazole are, may be, attributed to the presence of hydrogen bonds together with many interactions between the ligands and the active amino acid residue of the receptor. The comparison of the interactions of Taribavirin and Ribavirin drug with triazole in the largest pocket of 7JWY is also presented. Further interesting comparative docking analyses were performed. The results of this study suggest that triazole 3d may be considered for further investigation as one of the possible therapeutic agents for COVID-19.

6.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2143396

ABSTRACT

1,2,3-triazoles are versatile building blocks with growing interest in medicinal chemistry. For this reason, organic chemistry focuses on the development of new synthetic pathways to obtain 1,2,3-triazole derivatives, especially with pyridine moieties. In this work, a novel series of 1,5-disubstituted-1,2,3-triazoles functionalized with pyrimidine nucleobases were prepared via 1,3-dipolar cycloaddition reaction in a regioselective manner for the first time. The N1-propargyl nucleobases, used as an alkyne intermediate, were obtained in high yields (87-92%) with a new two-step procedure that selectively led to the monoalkylated compounds. Then, FeCl3 was employed as an efficient Lewis acid catalyst for 1,3-dipolar cycloaddition between different aryl and benzyl azides and the N1-propargyl nucleobases previously synthesized. This new protocol allows the synthesis of a series of new 1,2,3-triazole derivatives with good to excellent yields (82-92%). The ADME (Absorption, Distribution, Metabolism, and Excretion) analysis showed good pharmacokinetic properties and no violations of Lipinsky's rules, suggesting an appropriate drug likeness for these new compounds. Molecular docking simulations, conducted on different targets, revealed that two of these new hybrids could be potential ligands for viral and bacterial protein receptors such as human norovirus capsid protein, SARS-CoV-2 NSP13 helicase, and metallo-ß-lactamase.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Triazoles/chemistry , Azides/chemistry
7.
J Lipid Res ; 63(9): 100256, 2022 09.
Article in English | MEDLINE | ID: covidwho-2015714

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Acylation , Acyltransferases/metabolism , Alkynes , Azetidines , Coenzyme A/metabolism , Cysteine , Fatty Acid Synthase, Type I/metabolism , Humans , Myristates , Nitriles , Palmitates , Pyrazoles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Stearates
8.
Chem ; 8(10): 2766-2783, 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-1936147

ABSTRACT

The long-lasting COVID-19 pandemic and increasing SARS-CoV-2 variants demand effective drugs for prophylactics and treatment. Protein-based biologics offer high specificity, yet their noncovalent interactions often lead to drug dissociation and incomplete inhibition. Here, we have developed covalent nanobodies capable of binding with SARS-CoV-2 irreversibly via a proximity-enabled reactive therapeutic (PERx) mechanism. A latent bioreactive amino acid (FFY) was designed and genetically encoded into nanobodies to accelerate the PERx reaction rate. Compared with the noncovalent wild-type nanobody, the FFY-incorporated covalent nanobodies neutralized both wild-type SARS-CoV-2 and its Alpha, Delta, Epsilon, Lambda, and Omicron variants with drastically higher potency. This PERx-enabled covalent-nanobody strategy and the related insights into increased potency can be valuable to developing effective therapeutics for various viral infections.

9.
International Journal of Molecular Sciences ; 23(9):5083, 2022.
Article in English | ProQuest Central | ID: covidwho-1843068

ABSTRACT

The synthesis of new biocompatible antiviral materials to fight against the development of multidrug resistance is being widely explored. Due to their unique globular structure and excellent properties, [60]fullerene-based antivirals are very promising bioconjugates. In this work, fullerene derivatives with different topologies and number of glycofullerene units were synthesized by using a SPAAC copper free strategy. This procedure allowed the synthesis of compounds 1–3, containing from 20 to 40 mannose units, in a very efficient manner and in short reaction times under MW irradiation. The glycoderivatives were studied in an infection assay by a pseudotyped viral particle with Ebola virus GP1. The results obtained show that these glycofullerene oligomers are efficient inhibitors of EBOV infection with IC50s in the nanomolar range. In particular, compound 3, with four glycofullerene moieties, presents an outstanding relative inhibitory potency (RIP). We propose that this high RIP value stems from the appropriate topological features that efficiently interact with DC-SIGN.

10.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1715566

ABSTRACT

Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, ß- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 µM. Four conjugates 51 and 69-71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 µM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.


Subject(s)
Antiviral Agents , Cyclodextrins/chemistry , Influenza A Virus, H1N1 Subtype/metabolism , Orthomyxoviridae Infections/drug therapy , Pentacyclic Triterpenes/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dogs , Drug Evaluation, Preclinical , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/metabolism , Structure-Activity Relationship , Betulinic Acid
11.
Pharmaceutics ; 14(1)2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1636985

ABSTRACT

Green chemistry implementation has led to promising results in waste reduction in the pharmaceutical industry. However, the early sustainable development of pharmaceutically active compounds and ingredients remains a considerable challenge. Herein, we wish to report a green synthesis of new pharmaceutically active peptide triazoles as potent factor Xa inhibitors, an important drug target associated with the treatment of diverse cardiovascular diseases. The new inhibitors were synthesized in three steps, featuring cycloaddition reactions (high atom economy), microwave-assisted organic synthesis (energy efficiency), and copper nanoparticle catalysis, thus featuring Earth-abundant metals. The molecules obtained showed FXa inhibition, with IC50-values as low as 17.2 µM and no associated cytotoxicity in HEK293 and HeLa cells. These results showcase the environmental potential and chemical implications of the applied methodologies for the development of new molecules with pharmacological potential.

12.
Molecules ; 26(20)2021 Oct 10.
Article in English | MEDLINE | ID: covidwho-1463774

ABSTRACT

A series of novel naphthopyrano[2,3-d]pyrimidin-11(12H)-one containing isoxazole nucleus 4 was synthesized under microwave irradiation and classical conditions in moderate to excellent yields upon 1,3-dipolar cycloaddition reaction using various arylnitrile oxides under copper(I) catalyst. A one-pot, three-component reaction, N-propargylation and Dimroth rearrangement were used as the key steps for the preparation of the dipolarophiles3. The structures of the synthesized compounds were established by 1H NMR, 13C NMR and HRMS-ES means. The present study aims to also predict the theoretical assembly of the COVID-19 protease (SARS-CoV-2 Mpro) and to discover in advance whether this protein can be targeted by the compounds 4a-1 and thus be synthesized. The docking scores of these compounds were compared to those of the co-crystallized native ligand inhibitor (N3) which was used as a reference standard. The results showed that all the synthesized compounds (4a-l) gave interesting binding scores compared to those of N3 inhibitor. It was found that compounds 4a, 4e and 4i achieved greatly similar binding scores and modes of interaction than N3, indicating promising affinity towards SARS-CoV-2 Mpro. On the other hand, the derivatives 4k, 4h and 4j showed binding energy scores (-8.9, -8.5 and -8.4 kcal/mol, respectively) higher than the Mpro N3 inhibitor (-7.0 kcal/mol), revealing, in their turn, a strong interaction with the target protease, although their interactions were not entirely comparable to that of the reference N3.


Subject(s)
Antiviral Agents/chemical synthesis , Drug Design , Isoxazoles/chemistry , Pyrimidinones/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Click Chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Microwaves , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Thermodynamics , COVID-19 Drug Treatment
13.
J Biol Chem ; 297(5): 101272, 2021 11.
Article in English | MEDLINE | ID: covidwho-1446795

ABSTRACT

Mammalian cells acquire fatty acids (FAs) from dietary sources or via de novo palmitate production by fatty acid synthase (FASN). Although most cells express FASN at low levels, it is upregulated in cancers of the breast, prostate, and liver, among others, and is required during the replication of many viruses, such as dengue virus, hepatitis C, HIV-1, hepatitis B, and severe acute respiratory syndrome coronavirus 2, among others. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo FA synthesis contributes to host or viral protein acylation has been traditionally difficult to study. Here, we describe a cell-permeable and click chemistry-compatible alkynyl acetate analog (alkynyl acetic acid or 5-hexynoic acid [Alk-4]) that functions as a reporter of FASN-dependent protein acylation. In an FASN-dependent manner, Alk-4 selectively labels the cellular protein interferon-induced transmembrane protein 3 at its known palmitoylation sites, a process that is essential for the antiviral activity of the protein, and the HIV-1 matrix protein at its known myristoylation site, a process that is required for membrane targeting and particle assembly. Alk-4 metabolic labeling also enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.


Subject(s)
Fatty Acid Synthase, Type I/metabolism , Acylation , Fatty Acids/metabolism , HEK293 Cells , Humans , SARS-CoV-2/metabolism
14.
Chembiochem ; 22(22): 3199-3207, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1406083

ABSTRACT

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.


Subject(s)
Azides/chemistry , COVID-19 Vaccines/chemistry , Gluconates/chemistry , Glycine/chemistry , Histidine/chemistry , Lactones/chemistry , Vaccines, Virus-Like Particle/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Azides/immunology , COVID-19 Vaccines/immunology , Gluconates/immunology , Glycine/immunology , Histidine/immunology , Humans , Lactones/immunology , Models, Molecular , Molecular Structure , Vaccines, Virus-Like Particle/immunology
15.
ACS Appl Mater Interfaces ; 13(30): 35422-35430, 2021 Aug 04.
Article in English | MEDLINE | ID: covidwho-1392771

ABSTRACT

A new Diels-Alder (DA)-based photopatterning platform is presented, which exploits the irreversible, light-induced decarbonylation and subsequent cleavage of cyclopentadienone-norbornadiene (CPD-NBD) adducts. A series of CPD-NBD adducts have been prepared and systematically studied toward the use in a polymeric material photopatterning platform. By incorporating an optimized CPD-NBD adduct into polymer networks, it is demonstrated that cyclopentadiene may be unveiled upon 365 nm irradiation and subsequently clicked to a variety of maleimides with spatial control under mild reaction conditions and with fast kinetics. Unlike currently available photoinduced Diels-Alder reactions that rely on trapping transient, photocaged dienes, this platform introduces a persistent, yet highly reactive diene after irradiation, enabling the use of photosensitive species such as cyanine dyes to be patterned. To highlight the potential use of this platform in a variety of material applications, we demonstrate two proof-of-concepts: patterned conjugation of multiple dyes into a polyacrylate network and preprogrammed ligation of streptavidin into poly(ethylene glycol) hydrogels.

16.
Biomolecules ; 10(12)2020 12 11.
Article in English | MEDLINE | ID: covidwho-1383863

ABSTRACT

Multivalent antibody constructs have a broad range of clinical and biotechnological applications. Nanobodies are especially useful as components for multivalent constructs as they allow increased valency while maintaining a small molecule size. We here describe a novel, rapid method for the generation of bi- and multivalent nanobody constructs with oriented assembly by Cu-free strain promoted azide-alkyne click chemistry (SPAAC). We used sortase A for ligation of click chemistry functional groups site-specifically to the C-terminus of nanobodies before creating C-to-C-terminal nanobody fusions and 4-arm polyethylene glycol (PEG) tetrameric nanobody constructs. We demonstrated the viability of this approach by generating constructs with the SARS-CoV-2 neutralizing nanobody Ty1. We compared the ability of the different constructs to neutralize SARS-CoV-2 pseudotyped virus and infectious virus in neutralization assays. The generated dimers neutralized the virus similarly to a nanobody-Fc fusion variant, while a 4-arm PEG based tetrameric Ty1 construct dramatically enhanced neutralization of SARS-CoV-2, with an IC50 in the low picomolar range.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , COVID-19/virology , Click Chemistry , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , COVID-19 Drug Treatment
17.
Cells ; 10(7)2021 07 09.
Article in English | MEDLINE | ID: covidwho-1323127

ABSTRACT

Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs. In this review, we first discuss published studies on the presumed EV "delivery code" and on the combinations of the hypothesized EV surface membrane "sender" and "recipient" molecules that may mediate EV targeting in intercellular communication. Then we briefly review the main experimental approaches and techniques, and the bioinformatic tools that can be used to identify and characterize the structure and functional role of EV surface membrane molecules. In the final part, we present innovative techniques and directions for future research that would improve and deepen our understandings of EV-cell targeting.


Subject(s)
Extracellular Vesicles/metabolism , Animals , Biomarkers/metabolism , Glycomics , Humans , Models, Biological , Proteomics , Vaccines/immunology
18.
Bioorg Chem ; 114: 105117, 2021 09.
Article in English | MEDLINE | ID: covidwho-1283943

ABSTRACT

At present therapeutic options for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are very limited. We designed and synthesized three sets of small molecules using quinoline scaffolds. A series of quinoline conjugates (10a-l, 11a-c, and 12a-e) by incorporating 1,2,3-triazole were synthesized via a modified microwave-assisted click chemistry technique. Among the synthesized conjugates, 4-((1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-6-fluoro-2-(trifluoromethyl)quinoline (10g) and 6-fluoro-4-(2-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)ethoxy)-2-(trifluoromethyl)quinoline (12c) show high potency against SARS-CoV-2. The selectivity index (SI) of compounds 10g and 12c also indicates the significant efficacy compared to the reference drugs.


Subject(s)
Antiviral Agents/chemical synthesis , COVID-19 Drug Treatment , Quinolines/chemical synthesis , Triazoles/chemical synthesis , Antiviral Agents/chemistry , Click Chemistry , Humans , Molecular Docking Simulation , Quinolines/chemistry , SARS-CoV-2 , Triazoles/chemistry
19.
Molecules ; 26(10)2021 May 14.
Article in English | MEDLINE | ID: covidwho-1247996

ABSTRACT

Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.


Subject(s)
Biomimetics , Peptides/chemistry , Triazoles/chemistry , Amino Acid Sequence , Click Chemistry , Molecular Conformation , Peptidomimetics/chemistry
20.
Vaccines (Basel) ; 9(1)2021 Jan 11.
Article in English | MEDLINE | ID: covidwho-1022025

ABSTRACT

A workflow for rapid SARS-CoV-2 epitope discovery on peptide microarrays is herein reported. The process started with a proteome-wide screening of immunoreactivity based on the use of a high-density microarray followed by a refinement and validation phase on a restricted panel of probes using microarrays with tailored peptide immobilization through a click-based strategy. Progressively larger, independent cohorts of Covid-19 positive sera were tested in the refinement processes, leading to the identification of immunodominant regions on SARS-CoV-2 spike (S), nucleocapsid (N) protein and Orf1ab polyprotein. A summary study testing 50 serum samples highlighted an epitope of the N protein (region 155-71) providing good diagnostic performance in discriminating Covid-19 positive vs. healthy individuals. Using this epitope, 92% sensitivity and 100% specificity were reached for IgG detection in Covid-19 samples, and no cross-reactivity with common cold coronaviruses was detected. Likewise, IgM immunoreactivity in samples collected within the first month after symptoms onset showed discrimination ability. Overall, epitope 155-171 from N protein represents a promising candidate for further development and rapid implementation in serological tests.

SELECTION OF CITATIONS
SEARCH DETAIL